A fast implicit QR eigenvalue algorithm for companion matrices
نویسندگان
چکیده
Article history: Received 5 November 2008 Accepted 3 August 2009 Available online 4 September 2009 Submitted by V. Olshevsky AMS classification: 65F15 65H17
منابع مشابه
Implicit double shift QR-algorithm for companion matrices
In this paper an implicit (double) shifted QR-method for computing the eigenvalues of companion and fellow matrices will be presented. Companion and fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 structures are preserved under a step of the QR-method. This makes these matrices suita...
متن کاملA CMV-Based Eigensolver for Companion Matrices
In this paper we present a novel matrix method for polynomial rootfinding. We approximate the roots by computing the eigenvalues of a permuted version of the companion matrix associated with the polynomial. This form, referred to as a lower staircase form of the companion matrix in the literature, has a block upper Hessenberg shape with possibly nonsquare subdiagonal blocks. It is shown that th...
متن کاملFast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations
We introduce a class Cn of n × n structured matrices which includes three well-known classes of generalized companion matrices: tridiagonal plus rank-one matrices (comrade matrices), diagonal plus rank-one matrices and arrowhead matrices. Relying on the structure properties of Cn, we show that if A ∈ Cn then A′ = RQ ∈ Cn, where A = QR is the QR decomposition of A. This allows one to implement t...
متن کاملFast computation of eigenvalues of companion, comrade, and related matrices
The class of eigenvalue problems for upper Hessenberg matrices of banded-plus-spike form includes companion and comrade matrices as special cases. For this class of matrices a factored form is developed in which the matrix is represented as a product of essentially 2 × 2 matrices and a banded upper-triangular matrix. A non-unitary analogue of Francis’s implicitly-shifted QR algorithm that prese...
متن کاملThe QR iteration method for Hermitian quasiseparable matrices of an arbitrary order
The QR iteration method for tridiagonal matrices is in the heart of one classical method to solve the general eigenvalue problem. In this paper we consider the more general class of quasiseparable matrices that includes not only tridiagonal but also companion, comrade, unitary Hessenberg and semiseparble matrices. A fast QR iteration method exploiting the Hermitian quasiseparable structure (and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008